Solving Integer Programs

with Enumeration Cutting Planes

E. Andrew Boyd!

March, 1992

TR92-08

IThis work was sponsored in part by the National Science Foundation and the Of-
fice of Naval Research under NSF grant number DDM-9101578. The author gratefully
acknowledges the support of IMSL, Inc.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
MAR 1992 2. REPORT TYPE 00-00-1992 to 00-00-1992
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Solving Integer Programswith Enumeration Cutting Planes £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Computational and Applied M athematics Department ,Rice REPORT NUMBER
University,6100 Main Street M S 134,Houston, T X,77005-1892

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 24
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

A cutting plane technique with applicability to the solution of general integer
programs is presented and the computational value of this technique is demonstrated
by applying it to a collection of seven difficult integer programs arising from real-world
applications. Four of the seven problems are solved to optimality without the aid of
branch and bound, and six of the seven problems have the gap between the value of

the integer program and its linear programming relaxation closed by over 98%.

1 Introduction

Integer programs can be used to model an incredible wealth of real-world problems
in the areas of transportation, logistics, communication network design and routing,
scheduling, distributed system design and operation, as well as many, many other ar-
eas. Yet, while the list of applications is staggering, the generality of integer programs

makes them difficult to solve both in theory and practice.

While specific classes of integer programs have been the focus of considerable re-
search effort, algorithms for general integer programs have not received much recent
attention since they can be routinely confounded by relatively small problems. How-
ever, general algorithms have begun to receive renewed attention, in part due to the
availability of parallel computers which can take advantage of the natural coarse-grain
parallelism provided by integer programs, but more importantly due to mathematical

techniques that have only come to be appreciated for their computational possibilities

in the last decade.

Many authors have contributed to the mathematical techniques which have led
to a resurgence of interest in algorithms for general integer programs, but one effort
that clearly stands out as a landmark work is the Lanchester prize-winning paper of
Crowder, Johnson, and Padberg [6]. This paper used preprocessing and cutting plane
techniques to solve a collection of 0/1 integer programs compiled by IBM from real-
world client applications. Some of these problems were considered so difficult that at

one time it was thought they would never be solvable under any foreseeable advances

in computer technology or mathematical techniques. Using appropriate algorithms,
all of these problems can now be solved to optimality on most workstations in times
ranging from a few seconds to an hour depending on the size of the problem and the
algorithm used to solve it. The techniques used to solve these problems have begun
to find their way into research and commercial codes such as Georgia Tech’s GT-MIO

and IBM’s Optimization System Library.

Yet, while the techniques used by Crowder, Johnson, and Padberg work well on a
broad collection of 0/1 real-world integer programs, they do not work well on all such
problems. The challenge of general integer programming algorithms is to discover a
collection of basic techniques which, when taken together, can solve most problems

sharing characteristics common to many real-world integer programs.

In this paper we examine a cutting plane technique with applicability to the so-
lution of general integer programs. The cutting planes are based on a methodology
suggested by the author in [3]. The proposed Fenchel cuts build upon the celebrated
dual relationship between separation and optimization and differ from more conven-
tional cuts by focusing directly on the problem of cutting plane generation without

reference to an underlying class of facet-inducing cutting planes.

The paper is organized as follows. In Section 2 the theory underlying Fenchel
cuts is outlined in sufficient detail to provide a framework for the remaining sections,
and the specific method for generating the proposed class of Fenchel cuts is then

presented in Section 3. In Section 4 computational results are presented demonstrat-

ing the effectiveness of these cutting planes as a tool for solving real-world integer
programming problems. The paper concludes with a discussion of further possible

applications of this technique.

2 Fenchel Cuts

The underlying theory of Fenchel cuts is developed in [3]. In this section, we outline

the aspects of this theory necessary for the developments presented in this paper.
Consider the arbitrary integer program

max czx
(P) st. Az <b
x integer
where z € IR". Let Pr denote some polyhedron containing the feasible integer points
for (P) (which we assume is bounded for simplicity of exposition) and let # be feasible
for the constraints of (P) with the exception of the integrality restriction. Concep-
tually, & can be thought of as a point generated by solving the linear programming
relaxation of (P). The cut generation procedure to be described seeks an inequality

that is not satisfied by & but that contains Pr and therefore the set of feasible points
for (P).

While the cut generation procedure can be described in terms of an arbitrary
polyhedron Pr, the applicability of this procedure cannot be fully appreciated without

an understanding of how the polyhedron Pr might arise in practice. As but one

3

example, the polyhedron Pr could be the convex hull of feasible integer points for a
relaxation of (P) obtained by eliminating some collection of complicating constraints.
Polyhedra Pr arising in this way are found in another popular integer programming
technique, namely, Lagrangian relaxation. As in Lagrangian relaxation, the technique
described in this section does not require that the polyhedron Pr be expressed as an
explicit collection of linear inequalities, but instead that it is possible to optimize a
linear function on Pr. More will be said about a specific class of polyhedra Pg in the

next section.

Letting A be a vector in IR™ we define f()) and v()) as follows.

f(A) = max{\z : z € Pp}

v(X) = Aé — f(N)

The following is easily verified directly.

Theorem 1 There ezists a value A for which v(\) > 0 if and only if there exists a

hyperplane Az < f(\) separating & from Pg.

The practical implication of Theorem 1 is that the question of whether or not there
exists a cutting plane separating from Pr can be answered by investigating whether
or not the function v(\) achieves a positive value. For any fixed value of A the

inequality

Az < f(A)

is valid for Pp, and this inequality separates Pr from # if and only if v(A) > 0. Due

to connections with Fenchel duality such cuts were deemed Fenchel cuts.
The following two theorems, which can be found in [3], make note of important

theoretical properties that simplify finding values of A for which v(A) > 0.

Theorem 2 The function v()) is piecewise linear and concave. Specifically, v(A) can

be expressed as
v(A) = min{A2 — Xz* : &' € E(Pr)}

where E(Pr) is the set of extreme points of Pr.
Theorem 3 IfZ € Pr satisfies AT = f(X) then (& —T) is a subgradient of v(A) at X.
The definition of v()) yields the following observation.

Observation 1 For any scalar w > 0, v(wA) = wv(A).

The immediate implication of this observation is that if v(X) achieves a positive value
it achieves a positive value on any full dimensional set containing the origin in its

strict interior. In fact, it is not difficult to verify the following observation.

Observation 2 v(A)/||A|| is the distance from & to the plane Az = f()\) when A3 <

f(X) separates & and Pr and the negative of this distance when it does not.

Thus, solving the maximization problem
max v(A)

st Al <1

generates the deepest cut separating a point # from Pr. In practice, it is easier
to attempt to maximize v()) on a linear domain. Further, through the appropriate
choice of domain it is possible to affect the polyhedral characteristics of the generated

cut.

In summary, Fenchel cuts are generated by seeking to maximize the function
v(A) on any domain with appropriate characteristics. Any value of A with v(A) > 0
corresponds to a cutting plane, and if the maximum value of v()) is zero or less then

this represents a proof that there exists no cutting plane separating # from Ppg.

3 Fenchel Cuts from Subproblem Enumeration

At the heart of Fenchel cut generation for a polyhedron Pr is the need for an oracle
which optimizes a linear function on Pr. This can be seen from the fact that the
function v(\) is defined in terms of f(A), which is calculated by maximizing Az on
Pr. With an optimization oracle it is possible to develop algorithms for maximizing
v(A) based on generalized programming or, using the results of Theorem 3, approx-
imate ascent algorithms based on subgradients (see [3]). Assuming an oracle which
can parametrically optimize a linear function of Pr it is possible to apply the sim-
plex algorithm to maximize v()), and simplex based algorithms tend to be the most

efficient in practice (see [4]).

In this section we propose a way to define a subproblem polyhedron Pr on which

a linear function can be parametrically maximized and which provides good cutting

planes. In order to facilitate the discussion, we express the constraints of an arbitrary

integer program in the following form.

Yragz; + Yioidijy; < b i=1,...,m

0<z<1

0<y<1

z,y integer
Defining the vector 7 so that y‘; =0if d;; > 0 and y; =1 if d;; < 0, we consider the
polyhedron Pr defined by the convex hull of feasible integer solutions to the following

collection of inequalities.

Yiaragr; < b — T dyy; t=1,...,m
0<z<1
z integer

Formally, the polyhedron Pr of interest resides in the space IRP*? corresponding to
the z and y variables. However, it is conceptually simpler to think of Pr as residing
in IR? and recognizing that when speaking of valid inequalities for Pg it is intended
to mean that such inequalities will be extended to IRP*? by choosing coefficients of
0 for the subspace corresponding to the y variables. By the very choice of the 7, it
is easy to see that any valid inequality for Pr must be valid for the original integer

program.

If the polyhedron Pr has some special structure then it may be possible to apply
any variety of techniques to generate cutting planes for that structure, while if Pg

has no special structure then the problem of cutting plane generation remains very

7

difficult in general. However, if the number of feasible integer points contained in Pp
is small enough, solving the optimization problem necessary to generate a Fenchel cut
can be accomplished by enumeration; determining Az* for all integer ¥ € Pr and
choosing the largest value of Az¥. It is easy to see that parametric optimization is
no more difficult so that efficient simplex procedures can be used to generate Fenchel
cuts. When a Fenchel cut is generated by solving the necessary optimization problem

enumeratively we will refer to it as an enumeration cut.

In the following section we investigate the potential of this approach by applying

it to a collection of integer programs taken from real-world applications.

4 Applying Enumeration Cuts

The cutting planes described in the previous section were tested by applying them
to the collection of 0/1 integer programs studied by Crowder, Johnson, and Padberg
in [6]. A summary of these problems is shown in Table 1. Foremost among the
reasons for choosing these problems is that they come from real-world applications.
Such problems display characteristics that are not generally exhibited by randomly
generated problems and provide a much more fertile ground for developing practically
useful computational techniques. An additional consideration is that the problems
are rapidly becoming a standard test set, having been studied previously in [1], [3], [4],
[6], and [9]. The problems are available electronically through the MIPLIB library

as described in [2] (additional information can also be obtained by sending email

Name | Variables | Constraints | Nonzeros VLP vIp

P0033 33 15 98 2520.6 3089.0
P0040 40 23 110 | 61796.5 | 62027.0
P0201 201 133 1923 6875.0 7615.0
P0282 282 241 1966 | 176867.5 | 258411.0
P0291 291 252 2031 1705.1 5223.8
P0548 548 176 1711 315.3 8691.0
P2756 2756 755 8937 2688.7 3124.0

Table 1: Summary of Problems

to softlib@rice.edu with the message send catalog). The goal of the computational
tests was to determine whether enumeration cuts could be effective in refining the
linear programming approximation to an integer program. For this reason, no effort
was made to develop a branch and bound shell in which to embed the cutting plane

routines.

An outline of the algorithm used to test enumeration cuts is given in Figure 1.
While general preprocessing routines were not used (see [9]) two very basic variable
fixing routines were included since they had an important impact on the ability to
apply enumeration cuts effectively. The coefficient magnitude check consists of de-
termining whether the coeflicient of a variable z; in a constraint 3 a;z; < b with
all a; > 0 satisfies a; > b, and if so setting z; to 0. While seemingly a very weak
check, it can have a cascading effect whenever a variable is fixed using reduced cost
variable fixing. Reduced cost variable fixing (see [11, p. 389]) is a technique that fixes
an integer variable at its present value in the linear programming optimal solution

whenever the magnitude of its reduced cost exceeds the gap between the present linear

Figure 1: Algorithm KE Cut

1. Solve the linear programming relaxation of the integer program to obtain an
optimal solution Z. If & is integral, stop.

2. Fix variables using reduced costs and a coefficient magnitude check.

3. Determine variable sets that may yield valuable enumeration cuts and generate
a feasible point list for these sets.

4. For all knapsack constraints and enumeration sets of interest at this iteration,
attempt to generate a cutting plane. If no cutting plane can be generated, stop.
Otherwise, append the generated cutting planes to the problem formulation and
return to step 1.

programming value and the value of any known integer solution. Since the algorithm
makes no attempt to generate feasible solutions to the integer program and since it
was not at all clear what “arbitrary” gap value should be chosen, the optimal value
of the integer program was used for calculating such a gap. While there is a slight
performance degradation when a larger gap value is used, the numerical results were

relatively insensitive to the specific gap value.

Knapsack cutting planes, which have proven phenomenally successful in the so-
lution of many 0/1 integer programs, were generated using the same Fenchel cutting
plane ideas as enumeration cuts, but with the underlying polyhedron Pr defined by
the feasible points for the knapsack polyhedra associated with the individual con-
straints of the problem. Details regarding the efficient generation of Fenchel cutting
planes for knapsack polyhedra can be found in [4]. These cuts were used in addi-
tion to enumeration cuts because they tended to interact well with enumeration cuts,

providing better results than if just one type of cutting plane had been used.

10

4.1 Enumeration Cut Implementation

A fundamental question regarding the effective use of enumeration cuts is how the
variable set defining the polyhedron Pr is chosen. Since every variable that is not used
in defining Pr must be set at a value that most weakens each constraint in which it is
involved, it is not difficult to choose variable sets that yield large numbers of feasible
points and very weak cutting planes. Thus, care must be taken in choosing potentially
useful variable sets. In addition, the overwhelmingly important factor determining
the speed with which enumeration cuts can be generated is the number of feasible
points contained in the polyhedron Pr. If Pp is defined on a set of k variables, then
Pr could contain as many as 2¥ feasible 0/1 vectors, which for practical purposes
becomes too large in the neighborhood of k& = 15. In practice, not all 2* points will
be feasible and polyhedra Pg based on larger collections of variables can be used.
Nonetheless, effective application of enumeration cuts requires the use of reasonably

small variable sets.

Variable sets were chosen to correspond to the variables in individual constraints
in each problem. In this way, the number of feasible points was limited by the
number of feasible points for the constraint itself and could potentially be reduced
by any overlapping constraints — constraints whose variable sets have a nonempty
intersection with the chosen constraint. The existence of overlapping constraints

was particularly important in the case of special ordered set constraints; that is,

11

constraints that can be written in the form

Z.’IZ,SI

with properly complemented variables. In fact, special ordered set constraints proved
to be so instrumental that in instances where the variable set defined by the constraint
was small enough it was extended to include the variables in overlapping special or-
dered set constraints. If this extended constraint was too large, the original constraint

set was used.

The idea of extending the variable set to include special ordered set variables
was motivated by the use of surrogate constraints in the original work of Crowder,
Johnson, and Padberg. Surrogate constraints are valid inequalities for an integer
program constructed by taking a positive combination of other valid inequalities for
that problem. Crowder, Johnson, and Padberg used this technique to construct
surrogate constraints consisting of special ordered set constraints combined with one
other valid inequality. One of the difficulties with surrogate constraint generation is
that there is considerable freedom in the choice of multipliers used to construct the
surrogate constraint, and different choices of multipliers can lead to radically different
constraints. On the other hand, it is not difficult to argue that the polyhedron defined
by the points used in generating an enumeration cut must always be contained in the
knapsack polyhedron defined by a surrogate constraint on the same set of variables.
Thus, enumeration cuts will always be at least as strong the knapsack cuts from

any surrogate constraint, and just as importantly, the use of enumeration cuts takes

12

the guesswork out of choosing a good set of multipliers for constructing a surrogate

constraint.

When enumerating the set of feasible points corresponding to a given variable set,
an upper bound was placed on the number of feasible points that would be allowed. If
more than 4000 feasible points were generated, the variable set was abandoned under
the assumption that too much time would be required to generate enumeration cuts
based on a set of this size. In most instances enumeration cuts were generated on
much smaller sets, usually containing under 500 points and often containing fewer
than 100. In the case of problem P0201 the bound of 4000 was relaxed to 6000.
It was, in fact, quite a surprise that such small enumeration sets could be used as

effectively as is demonstrated by the computational results.

Since cutting planes generated as valid inequalities for knapsack polyhedra are by
nature defined on some subset of the variables in the original knapsack constraint,
it follows that enumeration cuts based on the constraint set of the original knapsack
polyhedron will always be at least as strong as those based on the cutting plane.
However, it was found that in some cases while an original knapsack polyhedron
might have too many variables to define an enumeration cut, the set of variables
associated with a cutting plane for that polyhedron might be sufficiently small for
this purpose. In fact, not only were such sets of appropriate size but they tended
to define variable sets which yielded useful enumeration cuts. This phenomenon
was particularly evident in the solution of problem P0282, and was discovered quite

fortuitously.

13

4.2 Computational Results

Computational results for Algorithm KE Cut are shown in Tables 2 and 3. For
comparison, Tables 4 and 5 present computational results for the same algorithm
but with no enumeration cuts; that is, with knapsack cuts and rudimentary variable
fixing only. The column labeled Cuts represents the total number of cutting planes
appended in the course of the algorithm. The columns labeled v}, v#2, and v} give
the value of the linear programming relaxation after 1, 2, and 3 minutes, respectively,
and the column v}, gives the value of the linear programming relaxation after T
minutes where T is given in the table. The values AGap'®, AGap®®, and AGap*®
represent the percentage by which the gap between vpp and vip was reduced in 1, 2,
and 3 minutes, respectively, with AGap” representing the percentage by which this

gap was closed in T minutes. All computational tests were performed on a SUN

SPARCserver 490.

Since Fenchel cuts are guaranteed to generate a cutting plane if one exists, and
since the algorithm was only terminated when no cutting planes could be found,
the values v¥p in Tables 4 and 5 represent the provably best gap reduction that
can be achieved using only knapsack cutting planes and rudimentary variable fixing.
This is true of all problems except P2756 which contained two constraints that were
sufficiently large so that an exact separation procedure could not be employed. The
difference between the values in Tables 4 and 5 can therefore be fully attributed to

the use of enumeration cuts.

14

Of particular interest is the fact that four of the seven problems were solved to
optimality using only cutting planes. Although problem P0040 required the aid of
branch and bound in the original study of Crowder, Johnson, and Padberg, it has
since been recognized as an extremely easy problem to solve using only a small number
of knapsack cutting planes and all subsequent studies have not required branch and
bound. In [9], problem P0548 was solved using a combination of knapsack cutting
planes and extensive preprocessing techniques. This problem has also been solved
using preprocessing techniques by members of the OSL development group at the IBM
T. J. Watson Research Center. Given that this problem was at one time considered
unsolvable, its solution in nothing more than a few minutes of CPU time without the
aid of branch and bound is a remarkable computational achievement for all of these
computational studies. However, while problems P0040 and P0548 have been solved
without branch and bound in other studies, to the author’s knowledge this is the first
study in which the problems P0033 and P0282 have been solved without the use of
branch and bound. While relatively small, problem P0033 has long been recognized
as a challenging problem, and just achieving a strong linear programming relaxation
can be a difficult task. Of great surprise to the author was the fact that problem

P0282 could be solved to optimality with knapsack and enumeration cuts.

15

5 Conclusions

In this paper we have examined a cutting plane technique with applicability to the
solution of general integer programs. The computational value of this technique
was demonstrated by applying it to a collection of problems arising from real-world
applications. As a result, four of the seven test problems were solved to optimality
without the aid of branch and bound, and six of the seven problems had the gap
between the value of the integer program and its linear programming relaxation closed
by over 98%. All of the results were achieved in under ten minutes of CPU time on

a SUN workstation.

While the results demonstrate that enumeration cuts are valuable computational
tools, the cuts themselves represent a very general technique, and the question of
instances in which they are effective in solving integer programs deserves further
consideration. In this paper it was shown that variable sets defined by problem
constraints, both from the original problem and from cutting planes appended to the
problem, were computationally useful. However, there are many alternative methods
for choosing the variable sets underlying enumeration cuts. For example, one method
that was not explored was variable sets defined by pairs of constraints. With these
and other techniques, it may yet be possible to do what would have been considered
impossible only a decade ago: solve all seven of the test problems without the aid of

branch and bound.

16

Name vLp vIp vip vip Vi vip Tt | Cuts
P0033 2520.60 3089.00 - - - 3089.00 | .13 57
P0040 | 61796.50 | 62027.00 - - - | 62027.00 | .01 2
P0201 6875.00 7615.00 7106.08 7185.00 7185.00 7185.00 | 3.10 36
P0282 | 176867.50 | 258411.00 | 256234.08 | 256851.19 | 257111.88 | 258411.00 | 9.67 | 566
P0291 1705.10 5223.75 - - - 5204.17 | .75 | 133
P0548 315.30 8691.00 3463.70 6008.12 8053.00 8691.00 | 3.73 | 202
P2756 2688.70 3124.00 2701.75 2912.58 3056.12 3115.60 | 7.18 | 495
fminutes on a SUN SPARCserver 490
Table 2: Cut Summary With Enumeration Cuts

Name vLp vrp AGap'® | AGap*® | AGap®® | AGap” | Tt | Cuts
P0033 2520.60 3089.00 - - -1 100.00% | .13 57
P0040 | 61796.50 | 62027.00 - - - | 100.00% | .01 2
P0201 6875.00 7615.00 | 31.23% | 41.89% | 41.89% | 41.89% | 3.10 36
P0282 | 176867.50 | 258411.00 | 97.33% | 98.09% | 98.41% | 100.00% | 9.67 | 566
P0291 1705.10 5223.75 - - -1 99.44% | .75 | 133
P0548 315.30 8691.00 | 37.59% | 67.97% | 92.38% | 100.00% | 3.73 | 202
P2756 2688.70 3124.00 3.00% | 51.43% | 84.41% | 98.07% | 7.18 | 495

fminutes on a SUN SPARCserver 490

Table 3: Cut Summary With Enumeration Cuts

17

Name vLP vIp vid vid v3P vip Tt | Cuts
P0033 2520.60 3089.00 - - - 3017.50 | .15 58
P0040 | 61796.50 | 62027.00 - - - | 62027.00 | .01 2
P0201 6875.00 7615.00 7125.00 - - 7125.00 | 1.07 50
P0282 | 176867.50 | 258411.00 | 256234.08 | 256851.19 | 257261.97 | 257261.97 | 3.28 | 413
P0291 1705.10 5223.75 - - 5204.17 | .74 | 133
P0548 315.30 8691.00 7248.51 7379.28 7379.28 7379.28 | 3.41 | 426
P2756 2688.70 3124.00 2701.75 2912.58 3056.12 3063.75 | 3.93 | 417
fminutes on a SUN SPARCserver 490
Table 4: Cut Summary Without Enumeration Cuts

Name vLP vrp AGap'® | AGap*® | AGap®® | AGap" | Tt | Cuts
P0033 2520.60 3089.00 - - -| 87.42% | .15 58
P0040 | 61796.50 | 62027.00 - - - | 100.00% | .01 2
P0201 6875.00 7615.00 | 33.78% - -| 33.78% | 1.07 50
P0282 | 176867.50 | 258411.00 | 97.33% | 98.09% | 98.59% | 98.59% | 3.28 | 413
P0291 1705.10 5223.75 - - -| 99.44% ; .74 | 133
P0548 315.30 8691.00 | 82.78% | 84.34% | 84.34% | 84.34% | 3.41 | 426
P2756 2688.70 3124.00 3.00% | 51.43% | 84.41% | 86.16% | 3.93 | 417

fminutes on a SUN SPARCserver 490

Table 5: Cut Summary Without Enumeration Cuts

18

References

[1]

[2]

[6]

[7]

Balas, E., S. Ceria, and G. Cornuéjols. 1991. A Lift-and-Project Cutting Plane
Algorithm for Mixed 0-1 Programs. Management Science Research Report 576,

Graduate School of Industrial Administration, Carnegie Mellon University.

Bixby, R. E., E. A. Boyd, and R. Indovina. March 1992. MIPLIB: A Test Set of

Mixed Integer Programming Problems. SIAM News 25:2, 16.

Boyd, E. A. 1990. Fenchel Cutting Planes for Integer Programs. To appear in

Operations Research.

Boyd, E. A. 1990. Solving Integer Programs with Fenchel Cutting Planes for
Knapsack Polyhedra. Technical Report TR90-20, Department of Mathematical

Sciences, Rice University.

Boyd, E. A. 1991. On the Convergence of Fenchel Cutting Planes in Mixed-
Integer Programming. Technical Report TR91-39, Department of Mathematical

Sciences, Rice University.

Crowder, H., E. L. Johnson, and M. W. Padberg. 1983. Solving Large-scale Zero-

one Linear Programming Problems. Operations Research 31, 803-834.

Gomory, R. E. 1958. Outline of an Algorithm for Integer Solutions to Linear

Programs. Bulletin of the American Mathematical Society 64, 275-278.

19

8]

[9]

[10]

[11]

[12]

[13]

[14]

Grotschel, M., L. Lovasz, and A. Schrijver. 1988. Geometric Algorithms and

Combinatorial Optimization. Springer-Verlag, New York.

Hoffman, K. L., and M. W. Padberg. 1991. Improving the LP-Representation of
Zero-One Linear Programs for Branch-and-Cut. ORSA Journal on Computing

3, 121-134.

Lemaréchal, C. 1989. Nondifferentiable Optimization. In Optimization, G. L.
Nemhauser et. al. eds., Handbooks in Operations Research and Management

Science 1, 529-572. North Holland, New York.

Nembhauser, G. L. and L. A. Wolsey. 1988. Integer and Combinatorial Optimiza-

tion. Wiley and Sons, New York.

Shapiro, J. F. 1971. Generalized Lagrange Multipliers in Integer Programming.

Operations Research 19, 68-76.

Shapiro, J. F. 1979. Mathematical Programming: Structures and Algorithms.

Wiley and Sons, New York.

Wolfe, P. 1976. Finding the Nearest Point in a Polytope. Mathematical Program-

ming 11, 128-149.

20

